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ABSTRACT

Expected information gain as a result of life testing n units for time
t is calculated for the time transformed exponential model and a utility
function based on entropy. We show that the expected information gain is
concave increasing in n and a transform of the test time t . A computer
program for calculating expected entropy for the Weibull distribution model
is given. Tje may provide practical guidance in designing life test ex-
periments.
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EXPECTED INFORMATION FROM A LIFE TEST EXPERIMENT

by

Richard E. Barlow and Jaw Huan Hsiung

1. INTRODUCTION

In considering a life test experiment, two questions to be answered

are:

How many items should be tested?

and

How long should we be prepared to wait before analyzing the data?

As Lindley (1956) pointed out, "the object of experimentation is (often)

not to reach decisions, but rather to gain knowledge about the world."

Hence,we do not consider the cost of experimentation directly in a con-

ventional decision analysis approach to the solution of our problems.

Instead, we consider the influence of sample size and test time on various

neasures of expected information to be gained.

Since the objective of testing is to gain infomwtion about life

times of similar item, we need to determine how our expected measure of

Information to be gained depends on sample size as well as test time.

By infozationz, we man anything which ohan gee our probability distribu-

tion about unknown quantities. To measure this change we use a utility

function, u(A,d(D)) , where A is the unknown life distribution para-

aeter of Interest and the decision taken, d(D) , based on observed data

D , will (in this paper) usually be identified with the posterior mean

or the posterior density. The expected gain in Information based on n

observations can then be measured by

, - . . ... . ...- - . - - . -. . .. -- -.. ... ..
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E~u u(- ~( DI~ d, - m uXdwA (1.0)

Indax fuAdw d~~)A dA

where A is the parameter space, v is a prior density for X and

ir(. I D) is the posterior density for X. given data D and d belongs

to some appropriate decision space. Rlaiffa and Schleifer (1961) call

(1.0) the expected value of sample Information. The expression is easily

seen to be nonnegative. This idea of measuring expected information as

expected utility has been discussed by DeGroot [(1970), pp. 429-433] and

more recently by Bernardo (1979).

To illustrate ideas, first consider a non-life test situation where

n normally distributed measurements are to be made. Suppose our uncer-

tainty about measurement X given 8 and a2 is measured by a N(O,a 2)

distribution. For convenience, suppose a2 is known but 0 is unknown

so that we wish to learn about 8 . Let our prior uncertainty for 0 be

measured by a N(0,y 2) distribution. Let x1 x2, ... xn be n In-

dependent (given 0) observations so that

4, - (x1 + ... + %)In

given 0 has a , distribution while 0 given z has a

1(t(i) .r ) distribution with mean

i'(1) - (1-w) o + W2

and variance

C ( +n 2 a
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2

where v 2 . To measure information gained as a result of these
Y + _.

n measurements, let our utility function be

1 f 18 d) < e

u(6,d) - otherwise.(1.1)

Then

MAXIMUM ru(O,d)w(O I ,n)dO
d

a Mimm [ilo - dl • € I <uJ
d

- illI - ua1 4 C I its]

s that d - A(-) Is our optimm "decisio" u this cae. Therefore,

if we take a measurements, our expected utility vill be

Sf (u(OjA(1))W(, , 9.)del- I{,l,- R(Cj)<I , n])

(1.2)

This is our expected posterior probability that, after n measurements

are made, 0 'ill be within e of the posterior mean v(;) . 0 is the

cumulative N(0,1) distribution. One way to determine n irrespective

of cost considerations is to specify a probability p and require that

I ,
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If

zX() 1 U2
S)-e du-p,

t-z(p)
T

then

n

and

p+

n- - 2!
Y

where [+ denotes greater nonnegative integer in the quantity within

brackets. If we let y . , then we have the non-Bayjeeia solution

n- (1!..92)a

Fra (1.1) we see that our expected measured gain in Information

based on n observations will be

,(n) - Ifu(O,p(i))w(8 I, ;n)del -u(9,0)w(O)de (1.3)

where Is the prior mean and u(;) is the posterior mam. It is

easy to verify from (1.2) that S(n) is oonoave Increasing in n so

that marginal gain Is dbo2aeing in sample size n .

There are several reasons why a utility function such as (1.1) and

the expected measured gain (1.3) based on (1.1) might not serve as an

adequate measure of information gained.

V........................................... .... .............. ....
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where p(DO) is the joint density of data D and parameter e while

p(D) Ip(De)de . If 0 - g(w) is a 1-1 map of @ onto @ and J

is the Jacobian of the transformation, then

S(n) - p(DSg(w))IJI log r

-ffp(D,s(w)IJI log ('-(s -))JJIJ'"

- ff p*(D,) log tPD).r*w) ]dD

where p* is the joint density of D and w . Hence (1.4) is invariant

under 1-1 transformations of the parameter space.

We will show for the time-transformed exponential life distribution

model and the utility function

u(ep(')) - log p(e)

where

max f [log p(e)]w(e I D)de
p(.)

f [log w(O I D)jv(O I D)dO

that our expected measured gain in information is concave increasing in

both sample size n and a transform of the test time t . Methods for

calculating expected information with respect to a Weibull life distribu-

tion model are discussed.

t~lNai dllb liw'.i...... ~ "- ' 'n i
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2. INFORMATION FROM A LIFE TEST EXPERIMENT

-R (x)
Let F o(x) - 0 be a specified absolutely continuous life dis-

tribution with hazard function %0 and failure rate ro(X) o(x)

Consider the life distribution model

-XR (x)(x I X) - 0  (2.1)

where A is the unknown "proportional hazard" but Ro  is specified.

(2.1) is called the time-transformed exponential life distribution model.

Suppose n similar units are put on life test for the time Interval

[O,t] and we judge the model (2.1) to be an appropriate description of

our uncertainty concerning the life length. If we observe k failures

with lifetimes XlX 2 , ... , xk  and n - k survivors in [O,tJ, then

the likelihood is

L(X I x1 ,x2 , .-. , it) k ..1-L, r0(Zi

k (2.2)

P Ip [-X R°(xi)+ (n-k)R(t " 20. 2)

k
Clearly k and s- Io(x,) + (n - k)R (t) together constitute

a sufficient statistic for X . For some results, we will use the prior

density

O r(a) X,a,b > 0 (2.3)

and posterior density
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([ k, a) -(b + a) &+kA a+k-1 -(b+s)A
" r((a + k)

2.1 A Measure of Informatien Based on Entropy

Lindley (1956) introduced the following measure of expected informa-

tion gain as a result of performing an experiment E resulting in data D :

EQr() - f (log ,r(X D)Jwr(X D)dX - f [log ir(X)]r(X)dX (2.4)
A A

where the expectation operator, E , is with respect to the unconditional

distribution of the data D.. Bernardo (1979) pointed out the connection

with expected utility where the utility function

u0,lr(A I D)) - log ,rQk I D) (2.5)

depends on A and the decision variable is w(X I D) , the posterior

density at X . The entropy is -f [log w(X I D)]w(A J D)dX and (2.4)

is the negative expected change in entropy as a result of performing E

Information measures based on (2.4) are dimensionless and as such

may be difficult to interpret. However, (2.4) does provide a way of

ordering proposed experiments by assigning information values which are

Invariant under 1-1 transformations of the parameter space, For example,

suppose we life test n units for time t and use the Weibull life

distribution model

P(x > x I *,A) - e- x * (2.6)

where a is known but X unknown. Also let the prior for A be

S

, . - . -
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v I A,B) = 3  A'le-B't /r(A)

Figure 2.1 and 2.2 are example graphs of expected information versus

sample size and test time respectively. For example, from the graphs,

we can see that testing 3 units for 3 years results in the same Infor-

nation as testing 10 units for about 0.75 years. Thus've have a ueans

of comparing experiments. Information values can be related to specified

experiments.

The parameters of the ga prior used (A and B) were originally

specified based on the pressure vessel data analyzed in Barlow, Toland

and Freeman (1979). The shape parameter a - 1.5 was used. The graphs

show that for these parsmeter values (A and B) there is little to be

gained by testing nore than 3 years.

In order to obtain our main results we define the experiment E

as a quadruple (V,8,A,P) , where V is the space of observations x

of the random vector X , 8 is the a-field of the subsets of P , the

probability measure (or density of X belongs to a family P indexed

by a parameter A e A . Suppose that the observation z in our ex-

periment E consists of a pair of observations x . ,x 2 , that is,

V - VI x V2 " Let a be the a-field over P Induced from 8 by

the transformation xi - Xi(M) and let Pi be the set of probability

measures on 8i  (i - 1,2) . Then EI - (Pi,8s,APL) (I - 1,2) are

two experiments. Denote the sun of the experiments E1 and E2

by E - (E1 ,E2 ) . Now we consider a related experiment E2(z1 ) -

(D2,B2,A,P2 (x1 ) , where P2 (xl) is the set of probability measures
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of X2  conditional on x1  Nov consider the expected information for

E2 were we to know the observation x 1  from performing E1 :

i(E2 (Z1 ),(A I zj)) " B2 f [log w( I z2 ,z1 ) J(A I z2 ,x1 )d .

(2.7)|:i] JfL(og ,(x I I.
f ( log w x2)lir(A )

A

Since w(A I z1 ) Is the posterior density of A after has been

observed, I (E 2 (x1 ),w(X I X1 )) is the measure of expected Information

gain to be provided by our observation after E has been per-

formed and z1 observed. I(E I E1) 2 z 1(EP(zlr),T(A I Ll))J

the average of z(E 2(z),w( I z )) over , Is defied to be the

average nformation to be provided by E2  after E has been performed.

From no on we shall often demote the eqiected information by I(E)

when the particular prior distlbutlm does wot have to be stressed.

This measure of information be the follauif8 properties:

. (E) O> 0.

*1 ~2. 1 (E2 JE)O

3. 1(E1 ) + I(E2 1 El) - '(E) here E - (E1 ,E2 .

4. If X1  is sufficient for A , then 1(E1 ) - 1(E)

~~~~~ - ' - . :. . .. .-.. , . ... ..-.. .-. . .... ,,.. ,.......,.o....,.......-
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5. If p(x19x2 1 A) - P(x1 I X)P(X2  1 X) , i.e., xI and X2 are in-

dependent when A is given, then I(E2 I E) I(E2)

6. Let E(1) - E be any experiment and let E2,E3 ... be independent

Identical experiments. Let E(2 ) - (E1,E2) and generally E(n) a

(EaE(n-l)) . Then I(E(n)) Is a concave increasing function of n .

See Lindley (1956) for proofs of the above properties.
Let E, tl, t 2 be the experiment wherein n units aged t1 and with

Identical life distributions are put on life test to age t 2  (t 2 > t1 )

Assume statistical independence among the n units conditional on A

Theorm 2.2

For the time-transformed exponential model, (x I ) - X 0

I(EnO,t) Is concave Increasing in a and also concave Increasing In

R0(t) . The prior density *(A) Is arbitrary.

Proof:

Since KC)Is known and contlusse 7 , K (1) Is expomentially

distributed with parmater A . Therefore, performing am experiment for

a period [Ot] under the tiae-tramsfored exponential model is the ae

as performing empermeant for a t/ns period [0,1o(t)| uder the eM-

ponantial model. Let w(t) be the prior in both cases. nce, the meas-

ures of expected InformstIon Sai provided by these two experiments are

the sam. It Is therefore sufficient to prove this theorem for the ex-

ponential model.

[t
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Nw def In*

E()- EOqt-A

E 1 E U-.k 0t.Aot given k 0  failures in [O,t-A]

E ~ n-kEu... ttt~g ive k failures in [O.t-A)

and kfailures In [t-A,t)

E(O E~l)E (2)

0 t-A t t+A

%,O~t-A E r-otAt E-dkgg

Then

i(E otv *(A)) - I(E n~Ot,aIr(A))

**I(E~l) E(0)) - IO1E-O~-~*( IC Do))

using the memoryless property of the exponential and Do a No0 , total

tine on test In (0,t-6)) , the sufficient statistic for A . Slailarly

I(E(2) I E~'~qE(0 )) , E ,1E ( k-lttaw. I ID0,D1)),

where D1 I (kj1 t total time on test in Ct-A *t)). To show concavity and

the Increasing property we weed only show

0 4 I(E(2) E~'),E(0 )), I (E~1l) E(0 ))
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By definition and property (5), we have

1D'j (I(Eu(- tt+A ,( D,D1 )))

SI(En.k0,t,t+A,r(A I Do) I .0,t..,,(A I Do))

( _C ( ,t, ', I Do))•

By using the meroryless property of the exponential and using the prior

v(C X D0 ) on the parameter space, we have I(E n-ko t, 4 W( ) -

I(En.ko,t-A,t,w(l I Do)) . Therefore,0

MEU- k0,,,t+,'W(AI DOD)))._I(E ...ktA,t.w( I Do))

But information is increasing in sample size, so that If k1 is the

(random) number of failures in E(l)  then

% I (I(E n.kd.kot,t+,W(x I DOD))) <I(Enk . t-.AtW(CA Do))

N1ow take the expectation with respect to Do . Then

0 .I(E(2) I El),E(O)) . I(El) I E(O))

Bac, CE z .o.) is concve Increasing In t which completes the proof. Ii

2.2 A Computerised Method for Calculating Rntroiv in the Case of-A
Volbull Distribution

Let l(z) =a , a • 0 in the tine-transformed exponential nodel.

That is, the life distribution of the test unit is

. ..... . .. . A", ,,, • ,,.......,,. -,., . ,- . ., .. - .• . . .- ..., . . ' ,,, ., .. . -, ,., .-.-. . , . . . , . .-.-.. ,,
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P(lifetims z)-eow (-Ax) a where x >O,* >O,.

This in the Weibufl distribution survival probability. Assume a Is

known. From (2.2),* the likelihood function of A is

( In k1  _ _) k )
L( jz, .. k't) a kk ~ Mp1 jA~I2 i

The pair kand a I x I + (n - k)t* constitute a sufficient statistic

for A . Let K and S be the random quantities corresponding to the

number of failures and total time on test, respectively. Bartholomew

(1963) has obtained the joint density of K and S given X as follows:

k Ifl k-) 1-0~ i u-

C where

D k(s) Q () (k -1)! 1 (i)(..)i. [ax1s, - t5(n - k + i1

The probability of observing no faiiure in [O,t] Is

P[K-O0 , S -nt a A Xnt* p(Ognts IAX)

where 'Im' man@ definition.

Assume (2.3) as the prior density of A .Using Iquation (10) In

Lindley (1956), we have
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A ks) -f P(k,s I ))Ir( log p(k,s IA)dX
A-0

* and

B k(s) - p(k,s) log p(k,s)

Now

Aks f Dk(S))Xk7' a)l- [log Dk(s) + k log X - s~dX

c - Dk) lg Dk(s) b rda
0

+ 5k f J a r~-,(a)X log Ad

0

D()f b a.+k,-(b+s)X d
ka r(a)

0

r(a + k)bOD (s) log Dk) *D (sbar(a + k + 1)
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APPENDIX

PROGRAM INFO (INPUT ,OUTPUT ,TAPE5-INPUT ,TAPE6-OUTPUT)
C

C THIS PROGRAM CALCULATES THE MEASURE OF INFORMATION (EXPECTED
C ENTROPY) OF A LIFE TEST EXPERIMENT WHEREI1N THE LIFE DISTRIBUTION
C OF THE TESTING UNIT IS WEIBULL DISTRIBUTION AND PRIOR IS A GAMMA
C DISTRIBUTION. WE USED SUBROUTINE 'GAUSSQ' TO EVALUATE THE INTEGRAL.
C 'GAUSSQ' APPLIES GAUSSIAN QUADRATUE TECHNIQUES TO DO THE EVALUA-
C TION OF THE INTEGRAL.
C THIS PROGRAM IS GOOD FOR SAMPLE SIZE UP TO 50.
C

DIMENSION BB(500) ,X(500) ,C(500) ,ENDPTS(2)
COMHON FACTA(55) ,TALPHAAB,N,R

1 READ 100, N, A, ALPHA, T, B
IF ( N.EQ.0) STOP
IF (N. GT. 1) GO TO 3

C
C INFORMATION CALCULATION FOR N-1

4C

TA-T**ALPHA
V-B+TA
Vb-B/V
VA-VB**A
UA- (A*TA*VA)/V
UB-VA*ALOG(VA)
A1-A+1
UC-(l-VA)* (PSI(A1)-ALOG(A))
UD-A*VA* (1-VD+ALOG(VB))
XINFO-UA-UB+UC+UD
PRINT 150,N,T,ALPHA,A,B
PRINT 300 ,XINF0
GO TO I

C
C INFORMATION CALCULATION FOR N GREATER THAN 1
C GENERATE FACTORIAL FROM 0 TO N
C

3 FACTA()-1.
FACTA(2)-1.

DO 5 1-3,33
I-I-i

5 FACTA(I) -*FACTA (K)
C
C CALCULATE AO AID 30
C

TALPA-T**ALPK&
MN*TALPIA
QmB+H

-QQ2(A*U)/Q

4~ ,-.;, . T..o.. ........ . - .. ,..-......... .. ,'.,..%'.. .'. ". ".. -:',". ".
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A-(QQ1)*QQ2
* BO-(QQ1) *AOG(QQ1)

PRINT 200,NT,ALPHA,A,B
CO-AO-BO
PRINT 250, Co

* KIND-1
KPTS-O
DO 25 1-2,3

" 1OI1-90*I
C
C WHEN N*TALPHA IS LARGE, IT IS BETTER TO CHARGE THE VALUE OF MH,
C FOR EXAMPLE MMm90*I, HM"120*, ......... , BUT THE VALUE OF Mm
C CANNOT GREATER THAN 500.
C

CALL GAUSSQ(KIND,MM,BALPHA,BETA,KPTS,ENDPTS,BB,X,C)
C
C 'GAUSSQ' RETURNS THE NODES X(I) AND WEIGHTS C(I), THEN APPROXIMATES
C THE INTEGRAL BY SUM OF C(I)*F(X(I)) (I FROM 1 TO N).
C

D-0.0
DO 20 J-1,MH

20 DD+C(J)*F(X(J))
PRINT 150, D
XINFO-CO+D
PRINT 300,XINFO

25 CONTINUE
100 FORMAT(I3,F6.3,F5.2,F4.1,F5.2)
150 FORMAT (//1OX,9HINTEGRAL-,F21.14)
200 FORMAT(///10X,2HN-,13,1OX,2HT-,F4.1,10X,6HALPHA-,F5.2,IOX,2HA-,F6

.3,10X,2HB-,F5. 2)
250 FORMAT(//1OX,3HCO-,F21.14)
300 FORMAT(//IOX, 12HINFORMATION-,F21. 14)

GO TO 1
END

FUNCTION F(S)
C
C TO USE 'GAUSSQ' AN INTEGRAL (FROM A TO B) OF F(X) MUST BE BROUGHT
C TO THE STANDARD INTEGRAL FORM. THIS IS DONE BY A SUITABLE CHANGE
C OF VARIABLES, FOR EXAMPLE, INTEGRAL (FROM A TO B) OF F (X) EQUALS
c TO (B-A)/2 TIMES THE INTEGRAL (FROM -1 TO 1) OF F(Z), WHERE
C Z-(X+1) (B-A)/2+A.
C

DIMNSION SUM(55) ,D(55) ,SUHM(55)
COMMON FACTA(55) ,TALPHAA,B,N,H
S-((S+1)*H/2.
TIND-TALPA* (N-1)
IF (S-TIND) 30,30,40

30 D(1)00.
GO TO 45

40 D(1)-N
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45 DO 50 K-2,N
so SUK(K)inO

DO 70 1-2,14
DO 60 J-1,K
TEST-TALPliA* (N-K+J-i)
IF (S.LE.TEST) GO TO 65
Turn (S-TEST) ** (K-i)
Tr2.IACTA(K+i) /(FACTA(J)*FACTA(K-J+2))

- TT3-(-i)** (J-i)
60 SUN(K) USUM(K)+TTi*TT2*Tr3
65 Tr4-FACTA(U+1)/I(FACTA(K+i) *FACA(N-K+i) *FACTA (K))
70 D(K)-TT4*StUM(K)

DO 80 K-i,N
TT5'.(B1(5+5) )**A
TT6-GAM(AM) /GAMO&(A)
TT7-D(K)/(C(S+B)**K)
TTS-n7*TT5*TT6,
X-A+K
Y-PSI(X)
TT9-K*Y-(S*X)I(S4B)

* TTiO-TT9-hLOG(TTS)-ALOG (TT6)
s0 SUMK(K)-TTS*TTiO

* XSUMK-O.
DO 90 K-1iN

90 XSM-XSMW04SU!OI(K)
P- (f*XSUHH) /2.
RETURN4
END

" Imk
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